论文标题
探索具有Illustristng物理学的宇宙中的$ z \ gtrsim6 $ quasars:基于气体的黑洞播种模型的影响
Probing the $z\gtrsim6$ quasars in a universe with IllustrisTNG physics: Impact of gas-based black hole seeding models
论文作者
论文摘要
我们探讨了一系列黑洞(BH)种子处方对最亮$ z \ gtrsim6 $ quasars在宇宙流体动力模拟中的形成的含义。基础星系形成模型与Illustristng相同。使用约束的初始条件,我们使用$(9〜 \ Mathrm {Mpc}/H)^3 $模拟量来研究BHS在罕见的过度密度区域(形成$ \ gtrsim10^{12} M _ {\ odot}/h $ HALOS的增长。 BH的生长在光晕中是紧凑且具有低潮汐场的最大值。对于这些光晕,我们考虑一系列基于气体的播种处方,其中$ m _ {\ mathrm {seed}} = 10^4-10^6〜M _ {\ odot}/h $ seeds插入了halos中的halos,用于halos thales,用于halo质量和密集的,浓密的,金属的金属气体质量, $ \ tilde {m} _ {\ mathrm {h}} $和$ \ tilde {m} _ {\ mathrm {\ mathrm {sf,mp}} $,分别为$ m _ {\ mathrm {seed}} $)。我们发现,具有$ \ tilde {m} _ {\ mathrm {sf,mp}} = 5 $和$ \ tilde {m} _ {\ mathrm {h}} = 3000 $成功生产$ s sim6 $ quasar and $ sim10^9〜mmm _ = condilde {m} _ {\ Mathrm {\ Mathrm {\ Mathrm {\ Mathrm {\ Mathrm { $ \ sim10^ {47}〜\ mathrm {ergs〜S^ {-1}} $ Luminosity。 BH合并在$ z \ gtrsim9 $中发挥了至关重要的作用,在积聚驱动的BH增长可以忽略不计的时候,造成了BH质量的早期增强。当应用了更严格的播种条件(例如,对于$ \ tilde {m} _ {\ mathrm {sf,mp}} = 1000 $)时,BH SEEDS的相对缺乏会导致合并率要低得多。在这种情况下,与Illaveristng中使用的积分模型相比,只有在提高最大允许的BH积聚率(按因子$ \ gtrsim10 $)时,才能形成$ z \ gtrsim6 $类星体。这可以通过允许超级 - 埃德丁顿积聚或降低辐射效率来实现。我们的结果表明,$ z \ sim6 $ quasars的祖细胞对不同的播种模型具有独特的BH合并历史,这将通过Lisa观测来区分。
We explore implications of a range of black hole (BH) seeding prescriptions on the formation of the brightest $z\gtrsim6$ quasars in cosmological hydrodynamic simulations. The underlying galaxy formation model is the same as in IllustrisTNG. Using constrained initial conditions, we study the growth of BHs in rare overdense regions (forming $\gtrsim10^{12}M_{\odot}/h$ halos by $z=7$) using a $(9~\mathrm{Mpc}/h)^3$ simulated volume. BH growth is maximal within halos that are compact and have a low tidal field. For these halos, we consider an array of gas-based seeding prescriptions wherein $M_{\mathrm{seed}}=10^4-10^6~M_{\odot}/h$ seeds are inserted in halos above critical thresholds for halo mass and dense, metal-poor gas mass (defined as $\tilde{M}_{\mathrm{h}}$ and $\tilde{M}_{\mathrm{sf,mp}}$, respectively, in units of $M_{\mathrm{seed}}$). We find that a seed model with $\tilde{M}_{\mathrm{sf,mp}}=5$ and $\tilde{M}_{\mathrm{h}}=3000$ successfully produces a $z\sim6$ quasar with $\sim10^9~M_{\odot}$ mass and $\sim10^{47}~\mathrm{ergs~s^ {-1}}$ luminosity. BH mergers play a crucial role at $z\gtrsim9$, causing an early boost in BH mass at a time when accretion-driven BH growth is negligible. When more stringent seeding conditions are applied (for e.g., $\tilde{M}_{\mathrm{sf,mp}}=1000$), the relative paucity of BH seeds results in a much lower merger rate. In this case, $z\gtrsim6$ quasars can only be formed if we enhance the maximum allowed BH accretion rates (by factors $\gtrsim10$) compared to the accretion model used in IllustrisTNG. This can be achieved either by allowing for super-Eddington accretion, or by reducing the radiative efficiency. Our results show that progenitors of $z\sim6$ quasars have distinct BH merger histories for different seeding models, which will be distinguishable with LISA observations.