论文标题

REPSR:培训有效的VGG风格的超分辨率网络,具有结构性重新分析和批准化

RepSR: Training Efficient VGG-style Super-Resolution Networks with Structural Re-Parameterization and Batch Normalization

论文作者

Wang, Xintao, Dong, Chao, Shan, Ying

论文摘要

本文探讨了培训有效的VGG风格超分辨率(SR)网络,该网络采用结构重新参数化技术。重新参数化的一般管道是首先培训具有多分支拓扑的网络,然后将其合并为标准的3x3汇集以进行有效的推断。在这项工作中,我们重新审视了这些主要设计,并研究了重新参数化SR网络的基本组件。首先,我们发现批发归一化(BN)对于带来训练非线性并改善最终表现很重要。但是,BN通常在SR中被忽略,因为它通常会降低性能并引入不愉快的人工制品。我们仔细分析了BN问题的原因,然后提出了一个直接但有效的解决方案。特别是,我们首先像往常一样培训具有迷你批量统计数据的SR网络,然后在后来的培训期间转换为使用人口统计信息。尽管我们成功地将BN重新引入了SR,但我们进一步设计了一个针对SR量身定制的可重新参数的块,即REPSR。它由一条干净的残留路径和两条膨胀的卷积路径组成。广泛的实验表明,我们的简单REPR能够在不同模型尺寸之间实现与以前的SR重新参数化方法的卓越性能。此外,与以前的SR方法相比,我们的REPSR可以在性能和实际运行时间(吞吐量)之间实现更好的权衡。代码将在https://github.com/tencentarc/repsr上找到。

This paper explores training efficient VGG-style super-resolution (SR) networks with the structural re-parameterization technique. The general pipeline of re-parameterization is to train networks with multi-branch topology first, and then merge them into standard 3x3 convolutions for efficient inference. In this work, we revisit those primary designs and investigate essential components for re-parameterizing SR networks. First of all, we find that batch normalization (BN) is important to bring training non-linearity and improve the final performance. However, BN is typically ignored in SR, as it usually degrades the performance and introduces unpleasant artifacts. We carefully analyze the cause of BN issue and then propose a straightforward yet effective solution. In particular, we first train SR networks with mini-batch statistics as usual, and then switch to using population statistics at the later training period. While we have successfully re-introduced BN into SR, we further design a new re-parameterizable block tailored for SR, namely RepSR. It consists of a clean residual path and two expand-and-squeeze convolution paths with the modified BN. Extensive experiments demonstrate that our simple RepSR is capable of achieving superior performance to previous SR re-parameterization methods among different model sizes. In addition, our RepSR can achieve a better trade-off between performance and actual running time (throughput) than previous SR methods. Codes will be available at https://github.com/TencentARC/RepSR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源