论文标题

海洋签名的总通量和极化光谱

Ocean signatures in the total flux and polarization spectra of Earth-like exoplanets

论文作者

Trees, Victor J. H., Stam, Daphne M.

论文摘要

星光的数值模拟是由地球样系外行星反映的,可预测可以通过未来望远镜搜索的可居住性特征。我们探索在这种反射光的通量和极化光谱中的水海的特征。使用添加加倍算法,我们计算了总通量F,极化通量Q以及由干燥和海洋模型行星反射的星光的极化P度,具有地球样气氛和斑点云。海洋由自然蓝色海水上方的菲涅耳组成,这些菲涅耳反射带有风的波浪,泡沫和波浪阴影。我们的结果表示为波长的函数(从300到2500 nm,分辨率为1 nm),并作为从90度到170度的行星相角的函数。海洋的闪光增加了f,| q |和p在非吸收波长下具有相位角的增加,并引起F和| Q |的光谱用于相交的各个相角。在近红外,Q为负,即极化的方向垂直于平面通过恒星,行星和观察者。在P谱中,在气态吸收带中闪闪发光(而不是峰)。干燥行星的光谱中缺少所有这些签名。可以以90度的相角搜索P中的倾角和近红外的负Q,其中行星恒星分离最大。极化光中的那些海洋签名不会遭受可能是由于云或反射干燥表面引起的假阳光信号。对于多云的行星,当闪闪发光(部分)无云时,可以进行海洋检测。因此,当使用海洋的行星信号建模时,使用水平的不均匀云覆盖物是至关重要的。随着时间的流逝,观察结果会增加捕捉无云的闪烁并检测海洋的可能性。

Numerical simulations of starlight that is reflected by Earth-like exoplanets predict habitability signatures that can be searched for with future telescopes. We explore signatures of water oceans in the flux and polarization spectra of this reflected light. With an adding-doubling algorithm, we compute the total flux F, polarized flux Q and degree of polarization P of starlight reflected by dry and ocean model planets with Earth-like atmospheres and patchy clouds. The oceans consist of Fresnel reflecting surfaces with wind-ruffled waves, foam and wave shadows, above natural blue seawater. Our results are presented as functions of wavelength (from 300 to 2500 nm with 1 nm resolution) and as functions of the planetary phase angle from 90 to 170 degrees. The ocean glint increases F, |Q| and P with increasing phase angle at non-absorbing wavelengths, and causes the spectra of F and |Q| for the various phase angles to intersect. In the near-infrared, Q is negative, i.e. the direction of polarization is perpendicular to the plane through the star, planet, and observer. In the P-spectra, the glint leaves dips (instead of peaks) in gaseous absorption bands. All those signatures are missing in the spectra of dry planets. The dips in P, and the negative Q in the near-infrared, can be searched for at a phase angle of 90 degrees, where the planet-star separation is largest. Those ocean signatures in polarized light do not suffer from false positive glint signals that could be due to clouds or reflecting dry surfaces. For heavily cloudy planets, ocean detection is possible when the glint is (partially) cloud-free. When modelling signals of planets with oceans, using horizontally inhomogeneous cloud covers is thus crucial. Observations spread over time would increase the probability of catching a cloud-free glint and detecting an ocean.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源