论文标题

在图形的向上平面L绘制

On Upward-Planar L-Drawings of Graphs

论文作者

Angelini, Patrizio, Chaplick, Steven, Cornelsen, Sabine, Da Lozzo, Giordano

论文摘要

在有向无环图(DAG)的上向上平面L绘制中,每个边缘$ e $表示为一个多线线,由垂直段组成,其最低端点位于$ e $的尾部,并在$ e $的头部结尾处的水平段。不同的边缘可能重叠,但不会交叉。最近,已经研究了以$ s $ graphs的方式研究了上面的L-Drawings,即带有单个来源$ s $的平面dags和一个单个水槽$ t $,其中包含从$ s $到$ t $的边缘。众所周知,飞机$ st $ graph,即嵌入式$ st $ graph,其中边缘$(s,t)$事件发生在外面,承认且仅当它承认bitonic $ st $ - 可以在线性时间内进行测试时,才承认上向上平面的L绘制。 我们研究了不一定是$ st $ graphs的DAG的向上平面L绘制。在组合方面,我们表明,当且仅当它是平面$ st $ graph的子图时,飞机dag承认了上向上的L绘制。这使我们能够证明,并非每个具有固定双峰嵌入的树都可以接受向上的L-Drawing。此外,我们证明,任何具有单个源(或单个水槽)的无环仙人掌都可以接受向上平面的L绘制,如果没有及传统边缘,则尊重给定的外平面嵌入。在算法侧,我们考虑具有单个源(或单个水槽)的DAG。我们在两种情况下为这些DAG提供了线性时间测试算法:(i)当图形必须尊重规定的嵌入时,并且(ii)当在嵌入式上没有限制时,但它是双连接的并且是串联的。

In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge $e$ is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of $e$ and of a horizontal segment ending at the head of $e$. Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for $st$-graphs, i.e., planar DAGs with a single source $s$ and a single sink $t$ containing an edge directed from $s$ to $t$. It is known that a plane $st$-graph, i.e., an embedded $st$-graph in which the edge $(s,t)$ is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic $st$-ordering, which can be tested in linear time. We study upward-planar L-drawings of DAGs that are not necessarily $st$-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane $st$-graph admitting a bitonic $st$-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but it is biconnected and series-parallel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源