论文标题
Ketod:知识增强的以任务为导向的对话
KETOD: Knowledge-Enriched Task-Oriented Dialogue
论文作者
论文摘要
对话系统研究中的现有研究主要将面向任务的对话和聊天视为单独的领域。建立一个可以自然而与用户无缝交谈的人类助手,重要的是要建立一个有效地进行两种类型对话的对话系统。在这项工作中,我们研究了如何将面向任务的对话和知识接地的聊天有效地集成到单个模型中。为此,我们创建了一个新的数据集Ketod(以知识增强的任务对话),我们自然地使用基于相关实体知识的Chit-Chat来丰富以任务为导向的对话。我们还为提出的任务提出了两个新模型,即SimpleTodplus和Combiner。自动评估和人类评估的实验结果表明,所提出的方法可以显着改善知识增强的响应产生的性能,同时保持竞争性的以任务为导向的对话框性能。我们认为,我们的新数据集将成为未来研究的宝贵资源。我们的数据集和代码可在\ url {https://github.com/facebookresearch/ketod}上公开获得。
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains. Towards building a human-like assistant that can converse naturally and seamlessly with users, it is important to build a dialogue system that conducts both types of conversations effectively. In this work, we investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model. To this end, we create a new dataset, KETOD (Knowledge-Enriched Task-Oriented Dialogue), where we naturally enrich task-oriented dialogues with chit-chat based on relevant entity knowledge. We also propose two new models, SimpleToDPlus and Combiner, for the proposed task. Experimental results on both automatic and human evaluations show that the proposed methods can significantly improve the performance in knowledge-enriched response generation while maintaining a competitive task-oriented dialog performance. We believe our new dataset will be a valuable resource for future studies. Our dataset and code are publicly available at \url{https://github.com/facebookresearch/ketod}.