论文标题

固定和分布的基因表达时间延迟在反应扩散系统中

Fixed and Distributed Gene Expression Time Delays in Reaction-Diffusion Systems

论文作者

Sargood, Alec, Gaffney, Eamonn A., Krause, Andrew L.

论文摘要

时间延迟,建模细胞内基因表达的过程,已显示出对反应扩散系统中模式形成动力学的重要影响。特别是,过去的工作表明,这种时间延迟可以缩小图灵空间,从而抑制模式在大量参数范围内形成。即使发生图灵不稳定性,这种延迟也可以增加模式形成的时间。在这里,我们考虑了结合固定或分布式时间延迟的反应扩散模型,对基因表达动力学的潜在随机性进行建模,并通过系统的线性不稳定性分析和数值模拟来分析这些模型,以对几组不同的反应动力学组进行数值模拟。我们发现,与固定的延迟相比,即使是复杂的分布内核(偏斜的高斯概率密度函数)与固定延迟的平均延迟相比,反应扩散动力学几乎没有影响。我们表明,随着平均时间延迟($τ$)的增加,模型中延迟项的位置可能会导致图灵空间的大小(增加或减小)的变化。我们表明,从同质稳态的扰动中形成形成的时间与$τ$线性缩放,并猜想这是时间延迟对反应 - 扩散动力学的一般影响,而与延迟项的动力学或位置的形式无关。最后,我们表明,虽然初始条件和边界条件可以影响这些动态,尤其是时间图案,但在初始数据和边界数据的变化下,延迟的效果显着。总体而言,我们的结果有助于阐明基因表达时间延迟在反应扩散模式中的作用,并提出明确的方向,以进一步研究更现实的模式形成模型。

Time delays, modelling the process of intracellular gene expression, have been shown to have important impacts on the dynamics of pattern formation in reaction-diffusion systems. In particular, past work has shown that such time delays can shrink the Turing space, thereby inhibiting patterns from forming across large ranges of parameters. Such delays can also increase the time taken for pattern formation even when Turing instabilities occur. Here we consider reaction-diffusion models incorporating fixed or distributed time delays, modelling the underlying stochastic nature of gene expression dynamics, and analyze these through a systematic linear instability analysis and numerical simulations for several sets of different reaction kinetics. We find that even complicated distribution kernels (skewed Gaussian probability density functions) have little impact on the reaction-diffusion dynamics compared to fixed delays with the same mean delay. We show that the location of the delay terms in the model can lead to changes in the size of the Turing space (increasing or decreasing) as the mean time delay, $τ$, is increased. We show that the time to pattern formation from a perturbation of the homogeneous steady state scales linearly with $τ$, and conjecture that this is a general impact of time delay on reaction-diffusion dynamics, independent of the form of the kinetics or location of the delayed terms. Finally we show that while initial and boundary conditions can influence these dynamics, particularly the time-to-pattern, the effects of delay appear robust under variations of initial and boundary data. Overall our results help clarify the role of gene expression time delays in reaction-diffusion patterning, and suggest clear directions for further work in studying more realistic models of pattern formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源