论文标题
热声系统中靠近精益井喷的热声系统中的对数周期性的烙印
Imprints of log-periodicity in thermoacoustic systems close to lean blowout
论文作者
论文摘要
在统计物理学的背景下,关键现象伴随着在系统状态突然发生变化的临界点上具有奇异性的功率定律。在这项工作中,我们表明湍流热声系统中的精益井喷(LBO)可以看作是一种关键现象。作为接近LBO的系统动力学的关键发现,我们揭示了离散量表不变性(DSI)的存在。在这种情况下,我们在LBO之前的压力波动中确定了在lbo的压力波动中,在时间演变中确定了对数周期振荡的存在。 DSI的存在表明井喷的递归发展。此外,我们发现$ a_f $显示的速度比指数增长快,并且在井喷时会变得单数。然后,我们提出了一个模型,该模型根据对与其增长相关的幂律的对数周期校正来描述$ a_f $的演变。使用该模型,我们发现甚至可以在几秒钟之前预测井喷。 LBO的预测时间与从实验中获得的LBO的实际发生时间非常吻合。
In the context of statistical physics, critical phenomena are accompanied by power laws having a singularity at the critical point where a sudden change in the state of the system occurs. In this work, we show that lean blowout (LBO) in a turbulent thermoacoustic system can be viewed as a critical phenomenon. As a crucial discovery of the system dynamics approaching LBO, we unravel the existence of the discrete scale invariance (DSI). In this context, we identify the presence of log-periodic oscillations in the temporal evolution of the amplitude of dominant mode of low-frequency oscillations $(A_f)$ exist in pressure fluctuations preceding LBO. The presence of DSI indicates the recursive development of blowout. Additionally, we find that $A_f$ shows a faster than exponential growth and becomes singular when blowout occurs. We then present a model that depicts the evolution of $A_f$ based on log-periodic corrections to the power law associated with its growth. Using the model, we find that blowout can be predicted even several seconds earlier. The predicted time of LBO in good agreement with the actual time of occurrence of LBO obtained from the experiment.