论文标题
在伴随的同源selmer模块$ _2 $ - 代表的结组模块
On adjoint homological Selmer modules for SL$_2$-representations of knot groups
论文作者
论文摘要
我们介绍了一个结的SL $ _2 $代表的伴随同源模块,该模块可以看作是双伴随的Selmer模块的结节理论类似物,用于Galois表示。然后,我们显示出伴随的Selmer模块的有限生成的扭转,这在数字理论中被广泛称为猜想,并给出了一些具体的例子。
We introduce the adjoint homological Selmer module for an SL$_2$-representation of a knot group, which may be seen as a knot theoretic analogue of the dual adjoint Selmer module for a Galois representation. We then show finitely generated torsion-ness of our adjoint Selmer module, which are widely known as conjectures in number theory, and give some concrete examples.