论文标题

加权和分离图的Leavitt路径代数

Leavitt path algebras of weighted and separated graphs

论文作者

Ara, Pere

论文摘要

在本文中,我们表明,加权图的Leavitt路径代数和分离图的Leavitt路径代数密切相关。我们证明,排行线顶点加权图$(e,ω)$的任何Leavitt Path emgra $ l(e,ω)$ is $*$ - 同构对特定双部分分离的图形$(e(ω),c(ω))$的下列莱维特路径代数。 For a general locally finite weighted graph $(E, ω)$, we show that a certain quotient $L_1(E,ω)$ of $L(E,ω)$ is $*$-isomorphic to an upper Leavitt path algebra of another bipartite separated graph $(E(w)_1,C(w)^1)$.我们还介绍了代数$ l^{\ mathrm {ab}}(e,w)$,这是由一组部分异构体生成的通用驯服$*$ - 代数。我们为$ l(e,ω)$的理想结构带来了一些结果,我们详细研究了Leavitt代数$ L(m,n)$的两种不同的最大理想。

In this paper we show that Leavitt path algebras of weighted graphs and Leavitt path algebras of separated graphs are intimately related. We prove that any Leavitt path algebra $L(E,ω)$ of a row-finite vertex weighted graph $(E,ω)$ is $*$-isomorphic to the lower Leavitt path algebra of a certain bipartite separated graph $(E(ω),C(ω))$. For a general locally finite weighted graph $(E, ω)$, we show that a certain quotient $L_1(E,ω)$ of $L(E,ω)$ is $*$-isomorphic to an upper Leavitt path algebra of another bipartite separated graph $(E(w)_1,C(w)^1)$. We furthermore introduce the algebra $L^{\mathrm{ab}} (E,w)$, which is a universal tame $*$-algebra generated by a set of partial isometries. We draw some consequences of our results for the structure of ideals of $L(E,ω)$, and we study in detail two different maximal ideals of the Leavitt algebra $L(m,n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源