论文标题

在较小的沉积速率的情况下

Convergence of solutions to a convective Cahn-Hilliard type equation of the sixth order in case of small deposition rates

论文作者

Rybka, Piotr, Wheeler, Glen

论文摘要

我们显示了解决六阶对流Cahn-Hilliard方程的解决方案的稳定。 {问题}具有梯度流的结构,该梯度流以系数$δ> 0 $的二次不稳定项扰动。通过Carvalho-Langa-Robinson应用抽象结果,我们表明,对于小$δ$,方程在弱的意义上具有梯度流的结构。在途中,我们证明了一种用于抛物线问题的永恒解决方案的Liouville定理。最后,由于Hale-Raigel,所需的稳定是从强大的定理开始的。

We show stabilisation of solutions to the sixth-order convective Cahn-Hilliard equation. {The problem} has the structure of a gradient flow perturbed by a quadratic destabilising term with coefficient $δ>0$. Through application of an abstract result by Carvalho-Langa-Robinson we show that for small $δ$ the equation has the structure of gradient flow in a weak sense. On the way we prove a kind of Liouville theorem for eternal solutions to parabolic problems. Finally, the desired stabilisation follows from a powerful theorem due to Hale-Raugel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源