论文标题
关于多伴数和多角膜数的某些属性
On some properties of polycosecant numbers and polycotangent numbers
论文作者
论文摘要
多体数字和多角膜数作为多伯努利数字的两个类似物引入。结果表明,多重数字和多角膜数满足了许多类似于多伯努利数字的公式。但是,关于多角膜数的数字众所周知。例如,尚未构建在非阳性整数上插值它们的Zeta函数。在本文中,我们显示了多体数和多角膜数的一些代数特性。同样,我们将二元公式概括为多体数的二元公式,该公式基本上包括多角膜数的数字。
Polycosecant numbers and polycotangent numbers are introduced as level two analogues of poly-Bernoulli numbers. It is shown that polycosecant numbers and polycotangent numbers satisfy many formulas similar to those of poly-Bernoulli numbers. However, there is much unknown about polycotangent numbers. For example, the zeta function interpolating them at non-positive integers has not yet been constructed. In this paper, we show some algebraic properties of polycosecant numbers and polycotangent numbers. Also, we generalize duality formulas for polycosecant numbers which essentially include those for polycotangent numbers.