论文标题

微生物组数据的主体合并分析

Principal Amalgamation Analysis for Microbiome Data

论文作者

Li, Yan, Li, Gen, Chen, Kun

论文摘要

近年来,微生物组研究变得越来越普遍且大规模。通过高通量测序技术和公认的分析管道,通常会生产操作分类单元及其相关的分类结构的相对丰度数据。由于此类数据可能非常稀疏且尺寸高,因此通常需要减少维度来促进数据可视化和下游统计分析。我们提出了主体合并分析(PAA),这是一种基于合并的新型和分类指导的尺寸降低微生物组数据的范例。我们的方法旨在通过最大程度地减少适当测量的信息丢失来将构图汇总为较少数量的主体组成,并在可用的分类结构中进行指导。损失函数的选择是灵活的,可以基于熟悉的多样性指数,用于保留数据内或样本间多样性。为了启用可扩展计算,我们开发了一种层次PAA算法,以追踪连续简单合并的整个轨迹。开发了可视化工具,包括树状图,scree情节和顺序图。使用早产婴儿研究和HIV感染研究中的肠道微生物组数据证明了PAA的有效性。

In recent years microbiome studies have become increasingly prevalent and large-scale. Through high-throughput sequencing technologies and well-established analytical pipelines, relative abundance data of operational taxonomic units and their associated taxonomic structures are routinely produced. Since such data can be extremely sparse and high dimensional, there is often a genuine need for dimension reduction to facilitate data visualization and downstream statistical analysis. We propose Principal Amalgamation Analysis (PAA), a novel amalgamation-based and taxonomy-guided dimension reduction paradigm for microbiome data. Our approach aims to aggregate the compositions into a smaller number of principal compositions, guided by the available taxonomic structure, by minimizing a properly measured loss of information. The choice of the loss function is flexible and can be based on familiar diversity indices for preserving either within-sample or between-sample diversity in the data. To enable scalable computation, we develop a hierarchical PAA algorithm to trace the entire trajectory of successive simple amalgamations. Visualization tools including dendrogram, scree plot, and ordination plot are developed. The effectiveness of PAA is demonstrated using gut microbiome data from a preterm infant study and an HIV infection study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源