论文标题

treepir:通过快速索引和零存储开销的树色有效地检索默克尔的证明

TreePIR: Efficient Private Retrieval of Merkle Proofs via Tree Colorings with Fast Indexing and Zero Storage Overhead

论文作者

Dau, Son Hoang, Cao, Quang, Gagiano, Rinaldo, Huynh, Duy, Yi, Xun, Le, Phuc Lu, Luu, Quang-Hung, Viterbo, Emanuele, Huang, Yu-Chih, Zhu, Jingge, Jalalzai, Mohammad M., Feng, Chen

论文摘要

批处理私有信息检索(批处理PIR)方案允许客户端从数据库中检索多个数据项,而无需向存储服务器揭示它们。大多数现有的批量PIR方法都是基于批处理代码,尤其是概率批处理代码(PBC)(Angel等人S&p'18),该代码会产生大型存储开销。在这项工作中,我们表明\ textIt {Zero}存储开销是可以实现树状数据库的。特别是,我们开发了Treepir,这是一种量身定制的新型方法,该方法是为沿默克尔树中任意的根到叶子路径的私人检索而制定的,没有存储冗余。这种类型的树已在许多现实世界中广泛实现,例如Amazon DynamoDB,Google的证书透明度和区块链。沿根到叶路径的树节点形成了众所周知的默克尔证明。使用一种新颖的树着色的Treepir优于PBC,这是最先进的批量PIR计划中的基本组成部分(Angel等人S&P'18,Mughees-ren s&p'23,Liu等人等级S&p'24),在所有衡量标准中,总计$ 3 \ $ 3 \ $ $ $ $ $ - $ 1.5 $ 1.5 $ 1.5 $ 1.5 $ 1.5 $ 1.5 $ 1.5 $ 1.5 tiese $ 1.5次。最值得注意的是,Treepir具有$ 8 $ - $ 160 \ times $ $较低的设置时间,其Polylog-complexity索引算法为$ 19 $ - $ 160 \ times \ times $ $ $ $ $ $ $ $ $ $ $ $ 2^{10} $ 2} $ - $ 2^{24} $ sever。

A Batch Private Information Retrieval (batch-PIR) scheme allows a client to retrieve multiple data items from a database without revealing them to the storage server(s). Most existing approaches for batch-PIR are based on batch codes, in particular, probabilistic batch codes (PBC) (Angel et al. S&P'18), which incur large storage overheads. In this work, we show that \textit{zero} storage overhead is achievable for tree-shaped databases. In particular, we develop TreePIR, a novel approach tailored made for private retrieval of the set of nodes along an arbitrary root-to-leaf path in a Merkle tree with no storage redundancy. This type of trees has been widely implemented in many real-world systems such as Amazon DynamoDB, Google's Certificate Transparency, and blockchains. Tree nodes along a root-to-leaf path forms the well-known Merkle proof. TreePIR, which employs a novel tree coloring, outperforms PBC, a fundamental component in state-of-the-art batch-PIR schemes (Angel et al. S&P'18, Mughees-Ren S&P'23, Liu et al. S&P'24), in all metrics, achieving $3\times$ lower total storage and $1.5$-$2\times$ lower computation and communication costs. Most notably, TreePIR has $8$-$160\times$ lower setup time and its polylog-complexity indexing algorithm is $19$-$160\times$ faster than PBC for trees of $2^{10}$-$2^{24}$ leaves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源