论文标题

通过对逻辑出生死亡过程的比率歧义来推断密度依赖的人口动态机制

Inferring Density-Dependent Population Dynamics Mechanisms through Rate Disambiguation for Logistic Birth-Death Processes

论文作者

Huynh, Linh, Scott, Jacob G., Thomas, Peter J.

论文摘要

密度依赖性在微生物和癌细胞的生态和进化中很重要。通常,我们只能衡量净生长速率,但是产生观察到的动态的潜在密度依赖性机制可以在出生过程,死亡过程或两者兼而有之体现。因此,我们利用细胞数量波动的平均值和方差分别从遵循随机的出生死亡过程的时间序列中识别出具有逻辑生长的时间序列的出生和死亡率。我们的方法提供了关于随机参数可识别性的新观点,我们通过根据离散化bin大小来分析准确性来验证。我们将方法应用于均匀细胞群体经历三个阶段的情况:(1)自然增长到其承载能力,(2)用降低其承载能力的药物进行处理,并(3)克服该药物以恢复其原始携带能力。在每个阶段,我们都会歧义它是通过出生过程,死亡过程还是两者的某种组合发生的,这有助于理解耐药机制。在有限的数据集的情况下,我们提供了一种基于最大似然的替代方法,并解决了约束的非线性优化问题,以确定给定单元格时间序列的最可能的密度依赖参数。我们的方法可以应用于不同尺度的其他生物系统,以消除相同净生长速率的密度依赖性机制。

Density dependence is important in the ecology and evolution of microbial and cancer cells. Typically, we can only measure net growth rates, but the underlying density-dependent mechanisms that give rise to the observed dynamics can manifest in birth processes, death processes, or both. Therefore, we utilize the mean and variance of cell number fluctuations to separately identify birth and death rates from time series that follow stochastic birth-death processes with logistic growth. Our method provides a novel perspective on stochastic parameter identifiability, which we validate by analyzing the accuracy in terms of the discretization bin size. We apply our method to the scenario where a homogeneous cell population goes through three stages: (1) grows naturally to its carrying capacity, (2) is treated with a drug that reduces its carrying capacity, and (3) overcomes the drug effect to restore its original carrying capacity. In each stage, we disambiguate whether it happens through the birth process, death process, or some combination of the two, which contributes to understanding drug resistance mechanisms. In the case of limited data sets, we provide an alternative method based on maximum likelihood and solve a constrained nonlinear optimization problem to identify the most likely density dependence parameter for a given cell number time series. Our methods can be applied to other biological systems at different scales to disambiguate density-dependent mechanisms underlying the same net growth rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源