论文标题

具有单精度算术和自适应数值集成的加速实时耦合群集方法

Accelerating Real-Time Coupled Cluster Methods with Single-Precision Arithmetic and Adaptive Numerical Integration

论文作者

Wang, Zhe, Peyton, Benjamin G., Crawford, T. Daniel

论文摘要

我们探索实时耦合群集方法的框架,重点是提高其计算效率。通过时间依赖性的schrödinger方程来传播波函数对计算资源的需求很高,特别是对于高水平的理论,例如与多项式缩放的耦合群集。与早期对耦合簇特性的研究相似,我们证明,单位算术的使用将实时仿真的存储和乘法成本降低了大约两个因子,而对所得的UV/VIS吸收光谱通过时间依赖时间依赖于时型二极管矩的傅立叶变换而计算出的UV/VIS吸收光谱没有显着影响。与常规的CPU计算相比,通过直接基于GPU的实施获得了水簇测试模拟中的其他速度最高14倍。我们还发现,通过选择数值集成算法的精神选择,可以访问进一步的性能优化,而自适应方法(例如Cash-Karp集成商)在计算成本和数值稳定性之间提供了有效的平衡。最后,我们证明了一个基于常规的四阶runge-kutta方法的简单混合步骤积分器,即使对于强大的外部场,也能够稳定传播,只要时间步骤适当地适应了激光脉冲的持续时间,只有最小的计算范围。

We explore the framework of a real-time coupled cluster method with a focus on improving its computational efficiency. Propagation of the wave function via the time-dependent Schrödinger equation places high demands on computing resources, particularly for high level theories such as coupled cluster with polynomial scaling. Similar to earlier investigations of coupled cluster properties, we demonstrate that the use of single-precision arithmetic reduces both the storage and multiplicative costs of the real-time simulation by approximately a factor of two with no significant impact on the resulting UV/vis absorption spectrum computed via the Fourier transform of the time-dependent dipole moment. Additional speedups of up to a factor of 14 in test simulations of water clusters are obtained via a straightforward GPU-based implementation as compared to conventional CPU calculations. We also find that further performance optimization is accessible through sagacious selection of numerical integration algorithms, and the adaptive methods, such as the Cash-Karp integrator provide an effective balance between computing costs and numerical stability. Finally, we demonstrate that a simple mixed-step integrator based on the conventional fourth-order Runge-Kutta approach is capable of stable propagations even for strong external fields, provided the time step is appropriately adapted to the duration of the laser pulse with only minimal computational overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源