论文标题

学习非目标知识以进行几次射击语义细分

Learning Non-target Knowledge for Few-shot Semantic Segmentation

论文作者

Liu, Yuanwei, Liu, Nian, Cao, Qinglong, Yao, Xiwen, Han, Junwei, Shao, Ling

论文摘要

但是,几乎没有射击语义分割的现有研究仅着眼于挖掘目标对象信息,但是,通常很难告诉模棱两可的区域,尤其是在包括背景(BG)和分散对象(DOS)的非目标区域。为了减轻这个问题,我们提出了一个新颖的框架,即消除(NTRE)网络的非目标地区,以明确挖掘并消除查询中的BG和区域。首先,提出了BG开采模块(BGMM)通过学习一般BG原型提取BG区域。为此,我们设计了BG的损失,以监督BGMM的学习,仅使用已知的目标对象分割真相。然后,提出了消除模块和DO消除模块的BG,以依次过滤BG并从查询功能中进行信息,基于我们可以获得BG和无需DO的目标对象分割结果。此外,我们提出了一种原型对比度学习算法,以提高将目标对象与DOS区分开的模型能力。对Pascal-5i和CoCo-20i数据集进行了广泛的实验表明,尽管它很简单,但我们的方法还是有效的。

Existing studies in few-shot semantic segmentation only focus on mining the target object information, however, often are hard to tell ambiguous regions, especially in non-target regions, which include background (BG) and Distracting Objects (DOs). To alleviate this problem, we propose a novel framework, namely Non-Target Region Eliminating (NTRE) network, to explicitly mine and eliminate BG and DO regions in the query. First, a BG Mining Module (BGMM) is proposed to extract the BG region via learning a general BG prototype. To this end, we design a BG loss to supervise the learning of BGMM only using the known target object segmentation ground truth. Then, a BG Eliminating Module and a DO Eliminating Module are proposed to successively filter out the BG and DO information from the query feature, based on which we can obtain a BG and DO-free target object segmentation result. Furthermore, we propose a prototypical contrastive learning algorithm to improve the model ability of distinguishing the target object from DOs. Extensive experiments on both PASCAL-5i and COCO-20i datasets show that our approach is effective despite its simplicity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源