论文标题
Poisson集成剂的符号群
Symplectic Groupoids for Poisson Integrators
论文作者
论文摘要
我们使用局部符号lie lie caltoids来构建通用泊松结构的泊松集成剂。更准确地说,递归获得的汉密尔顿 - 雅各比式方程式的解决方案被解释为单位歧管街区的拉格朗日等分,而这又给了泊松集成剂。我们还坚持在Poisson几何形状的背景下,在此类集成器的后退分析中坚持Magnus公式的作用。
We use local symplectic Lie groupoids to construct Poisson integrators for generic Poisson structures. More precisely, recursively obtained solutions of a Hamilton-Jacobi-like equation are interpreted as Lagrangian bisections in a neighborhood of the unit manifold, that, in turn, give Poisson integrators. We also insist on the role of the Magnus formula, in the context of Poisson geometry, for the backward analysis of such integrators.