论文标题
量子生成学习的力量
Power of Quantum Generative Learning
论文作者
论文摘要
量子力学的内在概率性质引起了设计量子生成学习模型(QGLM)的努力。尽管取得了经验成就,但QGLMS的基础和潜在优势在很大程度上仍然是晦涩的。为了缩小这一知识差距,我们在这里探索QGLM的概括属性,即将模型从学习的数据扩展到未知数据的能力。我们考虑两个典型的QGLM,量子电路出生的机器和量子生成的对抗网络,并明确给出其概括界限。当量子设备可以直接访问目标分布并采用量子内核时,结果确定了QGLM的优势而不是经典方法。我们进一步采用这些概括界来在量子状态准备和哈密顿学习中具有潜在的优势。 QGLM在加载高斯分布和估算参数化的哈密顿量的基接地状态时的数值结果符合理论分析。我们的工作开辟了途径,以定量了解量子生成学习模型的力量。
The intrinsic probabilistic nature of quantum mechanics invokes endeavors of designing quantum generative learning models (QGLMs). Despite the empirical achievements, the foundations and the potential advantages of QGLMs remain largely obscure. To narrow this knowledge gap, here we explore the generalization property of QGLMs, the capability to extend the model from learned to unknown data. We consider two prototypical QGLMs, quantum circuit Born machines and quantum generative adversarial networks, and explicitly give their generalization bounds. The result identifies superiorities of QGLMs over classical methods when quantum devices can directly access the target distribution and quantum kernels are employed. We further employ these generalization bounds to exhibit potential advantages in quantum state preparation and Hamiltonian learning. Numerical results of QGLMs in loading Gaussian distribution and estimating ground states of parameterized Hamiltonians accord with the theoretical analysis. Our work opens the avenue for quantitatively understanding the power of quantum generative learning models.