论文标题

与全球和本地表示的嘈杂标记的数据的鲁棒性医学图像分类为指导的共同培训

Robust Medical Image Classification from Noisy Labeled Data with Global and Local Representation Guided Co-training

论文作者

Xue, Cheng, Yu, Lequan, Chen, Pengfei, Dou, Qi, Heng, Pheng-Ann

论文摘要

深度神经网络在各种自然图像和医学图像计算任务中取得了巨大的成功。但是,这些成就不可或缺地依赖于准确注释的培训数据。如果遇到一些嘈杂标记的图像,网络训练程序将遇到困难,导致次优的分类器。由于医学图像的注释质量在很大程度上依赖于注释者的专业知识和经验,因此在医学图像分析领域中,此问题更加严重。在本文中,我们提出了一种新颖的协作培训范式,并通过全球和本地代表性学习从嘈杂标记的数据中进行强大的医学图像分类,以打击缺乏高质量注释的医学数据。具体而言,我们采用带有嘈杂标签过滤器的自动化模型来有效地选择清洁和嘈杂的样品。然后,通过协作培训策略对干净的样品进行培训,以消除标记样品不完美的干扰。值得注意的是,我们进一步设计了一种新颖的全球和本地表示学习方案,以隐式将网络正规化以自我监督的方式使用嘈杂的样本。我们在四个公共医学图像分类数据集上评估了我们提出的强大学习策略,这些数据集具有三种类型的标签噪声,即,随机噪声,计算机生成的标签噪声和观察者间的可变性噪声。我们的方法的表现优于嘈杂标签方法的其他学习,我们还进行了广泛的实验来分析我们方法的每个组成部分。

Deep neural networks have achieved remarkable success in a wide variety of natural image and medical image computing tasks. However, these achievements indispensably rely on accurately annotated training data. If encountering some noisy-labeled images, the network training procedure would suffer from difficulties, leading to a sub-optimal classifier. This problem is even more severe in the medical image analysis field, as the annotation quality of medical images heavily relies on the expertise and experience of annotators. In this paper, we propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification from noisy-labeled data to combat the lack of high quality annotated medical data. Specifically, we employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples. Then, the clean samples are trained by a collaborative training strategy to eliminate the disturbance from imperfect labeled samples. Notably, we further design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples in a self-supervised manner. We evaluated our proposed robust learning strategy on four public medical image classification datasets with three types of label noise,ie,random noise, computer-generated label noise, and inter-observer variability noise. Our method outperforms other learning from noisy label methods and we also conducted extensive experiments to analyze each component of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源