论文标题
关于双重签名的Selmer团体的特征功率系列
On characteristic power series of dual signed Selmer groups
论文作者
论文摘要
我们将Bloch-Kato Selmer组的$ P $ - 主要部分与$ \ Mathbb {q} $相比,以非常见的prime $ p $连接到模块化表单上的签名Selmer组的特征功率系列的不变术语的coulotomic $ \ m m ialsbb {z} $ $ seltsimens $ $ $ seltsimens $ $ seltmer of cousclotomic selmer group。在普通情况下,这概括了Vigni和Longo的结果。在椭圆形曲线的情况下,第二作者金金,金(Kim)和艾哈迈德·莱姆(Ahmed-Lim)的早期作品均涵盖了这种结果,涵盖了普通和大多数超级案例。
We relate the cardinality of the $p$-primary part of the Bloch-Kato Selmer group over $\mathbb{Q}$ attached to a modular form at a non-ordinary prime $p$ to the constant term of the characteristic power series of the signed Selmer groups over the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$. This generalizes a result of Vigni and Longo in the ordinary case. In the case of elliptic curves, such results follow from earlier works by Greenberg, Kim, the second author, and Ahmed-Lim, covering both the ordinary and most of the supersingular case.