论文标题

$ 1 $ - 标题的发病率矩阵的表示形式的理论计算:$ 2 $ -Subsets vs. $ n $ -subsets

A representation-theoretic computation of the rank of $1$-intersection incidence matrices: $2$-subsets vs. $n$-subsets

论文作者

Ducey, Joshua E., Sherwood, Colby J.

论文摘要

令$ w_ {k,n}^{i}(m)$表示矩阵,该矩阵分别由$ k $ -subsets和$ n $ subsets索引,分别为$ m $ element set。行$ s $,列$ t $ of $ w_ {k,n}^{i}(m)$是$ 1 $,如果$ | s \ cap t | = i $,否则为$ 0 $。我们通过使用对称组的表示理论来计算任何字段上矩阵$ w_ {2,n}^{1}(m)$的等级。我们还提供了一个简单的条件,在该条件下,$ w_ {k,n}^{i}(m)$具有大$ p $ -rank。

Let $W_{k,n}^{i}(m)$ denote a matrix with rows and columns indexed by the $k$-subsets and $n$-subsets, respectively, of an $m$-element set. The row $S$, column $T$ entry of $W_{k,n}^{i}(m)$ is $1$ if $|S \cap T| = i$, and is $0$ otherwise. We compute the rank of the matrix $W_{2,n}^{1}(m)$ over any field by making use of the representation theory of the symmetric group. We also give a simple condition under which $W_{k,n}^{i}(m)$ has large $p$-rank.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源