论文标题

不对称粒子 - 抗粒子零方程:首先量化

Asymmetric particle-antiparticle Dirac equation: first quantization

论文作者

Rigolin, Gustavo

论文摘要

我们得出一个类似狄拉克的方程,​​即不对称的狄拉克方程,其中共享相同波数的颗粒和反粒子具有不同的能量和动量。我们表明,该方程是在适当的洛伦兹变换(增强和空间旋转)下协变量的,并且还确定其波函数的相应转换定律。我们获得了不对称狄拉克方程和标准dirac方程之间的形式连接,我们表明,通过正确调整本波方程的自由参数,我们可以使其可以重现通常的dirac方程的预测。我们表明,在不对称狄拉克方程的理论框架中,粒子的其余质量是四个参数的函数,这些参数是在适当的洛伦兹转换下的相对论不变的。这四个参数是标准迪拉克方程中出现的质量的类似物。我们证明,为了确保在奇偶校验和时间逆转操作(不正确的洛伦兹变换)以及电荷共轭操作下的不对称dirac方程的协方差,这四个参数以与四载体的四个组件完全相同的方式变化。但是,质量是这些参数正方形的函数,仍然是不变的。我们还广泛地研究了非对称狄拉克方程的自由粒子平面波解决方案,并得出其能量,螺旋性和自旋投影算子以及几种戈登的身份。将最小的耦合处方施加到非对称狄拉克方程后,在当前情况下解决了氢原子,这也使我们能够适当地获得其非相关性极限。

We derive a Dirac-like equation, the asymmetric Dirac equation, where particles and antiparticles sharing the same wave number have different energies and momenta. We show that this equation is Lorentz covariant under proper Lorentz transformations (boosts and spatial rotations) and also determine the corresponding transformation law for its wave function. We obtain a formal connection between the asymmetric Dirac equation and the standard Dirac equation and we show that by properly adjusting the free parameters of the present wave equation we can make it reproduce the predictions of the usual Dirac equation. We show that the rest mass of a particle in the theoretical framework of the asymmetric Dirac equation is a function of a set of four parameters, which are relativistic invariants under proper Lorentz transformations. These four parameters are the analog to the mass that appears in the standard Dirac equation. We prove that in order to guarantee the covariance of the asymmetric Dirac equation under parity and time reversal operations (improper Lorentz transformations) as well as under the charge conjugation operation, these four parameters change sign in exactly the same way as the four components of a four-vector. The mass, though, being a function of the square of those parameters remains an invariant. We also extensively study the free particle plane wave solutions to the asymmetric Dirac equation and derive its energy, helicity, and spin projection operators as well as several Gordon's identities. The hydrogen atom is solved in the present context after applying the minimal coupling prescription to the asymmetric Dirac equation, which also allows us to appropriately obtain its non-relativistic limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源