论文标题

Virasoro和Kac-Moody代数在2D关键晶格分区功能的通用张量网络表示中

Virasoro and Kac-Moody algebra in generic tensor network representations of 2d critical lattice partition functions

论文作者

Wang, Ruoshui, Zeng, Xiangdong, Shen, Ce, Hung, Ling-Yan

论文摘要

在本文中,我们提出了在二维关键晶格模型的通用张量网络表示中的Virasoro发电机和KAC-MOODY电流的一般实现。即使没有晶格模型的量子哈密顿量,我们的建议也有效,在许多涉及数值阻止的数值计算中,情况就是如此。我们测试了关于2D ISING模型以及二聚体模型的建议,即使系统尺寸相当小,它也可以很高的精度。我们的方法利用小圆柱体的本征状态在较大的圆柱体中产生后代状态,这表明不同尺寸的晶格之间存在一些复杂的代数关系。

In this paper, we propose a general implementation of the Virasoro generators and Kac-Moody currents in generic tensor network representations of 2-dimensional critical lattice models. Our proposal works even when a quantum Hamiltonian of the lattice model is not available, which is the case in many numerical computations involving numerical blockings. We tested our proposal on the 2d Ising model, and also the dimer model, which works to high accuracy even with a fairly small system size. Our method makes use of eigenstates of a small cylinder to generate descendant states in a larger cylinder, suggesting some intricate algebraic relations between lattice of different sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源