论文标题

Stampedes II:保形量规理论中的零多边形

Stampedes II: Null Polygons in Conformal Gauge Theory

论文作者

Olivucci, Enrico, Vieira, Pedro

论文摘要

我们考虑了单个跟踪操作员的相关功能,以双尺度限制接近零多边形的牙,其中所谓的$ \ textit {cusp times} $ $ t_i^2 = g^2 \ log x_ {i-1,i}借助Stampedes,符号和受过教育的猜测,我们发现任何此类相关器都可以通过一组Toda类型的耦合晶格来唯一地固定,并具有一些有趣的新颖功能。这些结果适用于大多数具有大量颜色的共形仪表理论,包括平面$ \ mathcal {n} = 4 $ sym。

We consider correlation functions of single trace operators approaching the cusps of null polygons in a double-scaling limit where so-called $\textit{cusp times}$ $t_i^2 = g^2 \log x_{i-1,i}^2\log x_{i,i+1}^2$ are held fixed and the t'Hooft coupling is small. With the help of stampedes, symbols and educated guesses, we find that any such correlator can be uniquely fixed through a set of coupled lattice PDEs of Toda type with several intriguing novel features. These results hold for most conformal gauge theories with a large number of colours, including planar $\mathcal{N}=4$ SYM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源