论文标题

能源节能和均衡的不连续的盖尔金方法,用于球形对称性中的Euler-Poisson方程

Energy conserving and well-balanced discontinuous Galerkin methods for the Euler-Poisson equations in spherical symmetry

论文作者

Zhang, Weijie, Xing, Yulong, Endeve, Eirik

论文摘要

本文介绍了球形对称性中的Euler-Poisson方程的高阶runge-kutta(RK)不连续的Galerkin方法。该方案可以通过精心设计的空间和时间离散化来保留一般的多粒子平衡状态,并实现直至机器精确度的总能量。为了实现均衡性能,数值解分解为平衡和波动组件,这些溶液在源项近似中的处理方式不同。该过程中遇到的一个非平凡挑战是平衡状态的复杂性,该状态受车道填充方程的控制。对于总能源保护,我们提出了二阶和三阶RK时间离散化,其中在RK方法的每个阶段中引入了不同的源项近似,以确保总能量的保护。还引入了精心设计的用于球形对称性的坡度限制器,以消除不连续性附近的振荡,同时保持均衡且具有能量良好的能量。提供了广泛的数值示例 - 包括带有现象学状态的恒星核心偏转的玩具模型,从而导致核心弹跳和冲击形成 - 以证明所提出的方法的所需特性,包括均衡的属性,高阶准确性,冲击捕获能力,捕获能力和总能量保护。

This paper presents high-order Runge-Kutta (RK) discontinuous Galerkin methods for the Euler-Poisson equations in spherical symmetry. The scheme can preserve a general polytropic equilibrium state and achieve total energy conservation up to machine precision with carefully designed spatial and temporal discretizations. To achieve the well-balanced property, the numerical solutions are decomposed into equilibrium and fluctuation components which are treated differently in the source term approximation. One non-trivial challenge encountered in the procedure is the complexity of the equilibrium state, which is governed by the Lane-Emden equation. For total energy conservation, we present second- and third-order RK time discretization, where different source term approximations are introduced in each stage of the RK method to ensure the conservation of total energy. A carefully designed slope limiter for spherical symmetry is also introduced to eliminate oscillations near discontinuities while maintaining the well-balanced and total-energy-conserving properties. Extensive numerical examples -- including a toy model of stellar core-collapse with a phenomenological equation of state that results in core-bounce and shock formation -- are provided to demonstrate the desired properties of the proposed methods, including the well-balanced property, high-order accuracy, shock capturing capability, and total energy conservation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源