论文标题
自我服务的物联网:实用和私人物联网计算,具有完整的用户控制
Self-Serviced IoT: Practical and Private IoT Computation Offloading with Full User Control
论文作者
论文摘要
通过这些设备可以访问各种敏感数据,因此采用(IoT)设备的采用(IoT)设备的快速增加引起了关键的隐私问题。依靠制造商的云服务处理此数据的当前现状尤其有问题,因为用户将数据归结一旦数据离开家园。最近发生的多起事件进一步质疑是否确实可以通过用户的数据来信任供应商。同时,用户希望由IoT设备和基于ML的云推断支持引人注目的功能,从而迫使他们订阅制造商管理的云服务。使用本地内枢纽的替代方法需要大量的硬件投资,管理和可伸缩性限制。本文提出了自助式的物联网(SSSIOT),这是一种使用混合枢纽设置来使IoT应用程序启用隐私感知的计算卸载的清洁式方法。 SSIOT独特地使机会计算可以卸载向公共云提供商,同时仍确保最终用户保留对其私人数据的完整端到端控制,从而减少了公共云提供商所需的信任。我们表明,只要可以解决无效的资源,有限的资源和安全隔离,SSOIT可以利用新兴功能-Service计算(例如AWS Lambda)来使这些卸载具有成本效益,可扩展性和高性能。我们构建了SSOIT的端到端原型,并使用代表现实世界IoT用例的几个微基准和示例应用程序对其进行评估。我们的结果表明,与仅在2-4个并行的2-4个应用程序中困难的局部方法相比,SSOIT是高度可扩展的。我们还表明,与本地枢纽相比,SSOIT具有成本效益(每年以每年10美元的价格运行智能门铃,每年为10美元),即使使用硬件ML加速器也是如此。
The rapid increase in the adoption of Internet-of-Things (IoT) devices raises critical privacy concerns as these devices can access a variety of sensitive data. The current status quo of relying on manufacturers' cloud services to process this data is especially problematic since users cede control once their data leaves their home. Multiple recent incidents further call into question if vendors can indeed be trusted with users' data. At the same time, users desire compelling features supported by IoT devices and ML-based cloud inferences which compels them to subscribe to manufacturer-managed cloud services. An alternative to use a local in-home hub requires substantial hardware investment, management, and scalability limitations. This paper proposes Self-Serviced IoT (SSIoT), a clean-slate approach of using a hybrid hub-cloud setup to enable privacy-aware computation offload for IoT applications. Uniquely, SSIoT enables opportunistic computation offload to public cloud providers while still ensuring that the end-user retains complete end-to-end control of their private data reducing the trust required from public cloud providers. We show that SSIoT can leverage emerging function-as-a-service computation (e.g. AWS Lambda) to make these offloads cost-efficient, scalable and high performance as long as key limitations of being stateless, limited resources, and security isolation can be addressed. We build an end-to-end prototype of SSIoT and evaluate it using several micro-benchmarks and example applications representing real-world IoT use cases. Our results show that SSIoT is highly scalable, as compared to local-only approaches which struggle with as little as 2-4 apps in parallel. We also show that SSIoT is cost-efficient (operating a smart doorbell for $10 a year) at the cost of minimal additional latency as compared to a local-only hub, even with a hardware ML accelerator.