论文标题
诺伊曼·拉普拉斯(Neumann Laplacians
Norm-resolvent convergence for Neumann Laplacians on manifolds thinning to graphs
论文作者
论文摘要
在$ \ Mathbb {r}^d,$ $ $ $ d \ ge2中,在薄域中为neumann laplacians建立了具有订单转换误差估算的差异收敛估计,$在恢复剂情况下以消失的厚度参数的限制,$收敛到度量图。限制量子图的顶点匹配条件显示与$δ'$类型密切相关。
Norm-resolvent convergence with order-sharp error estimate is established for Neumann Laplacians on thin domains in $\mathbb{R}^d,$ $d\ge2,$ converging to metric graphs in the limit of vanishing thickness parameter in the resonant case. The vertex matching conditions of the limiting quantum graph are revealed as being closely related to $δ'$ type.