论文标题

在图形模型的更广泛的先验分布中

On a wider class of prior distributions for graphical models

论文作者

Natarajan, Abhinav, Boom, Willem van den, Odang, Kristoforus Bryant, De Iorio, Maria

论文摘要

高斯图形模型是用于有条件独立性结构的有用工具。多元随机变量的推理。不幸的是,由于$ \ mathcal {g} _n $的指数增长,贝叶斯的潜在图结构的推断很具有挑战性,这是$ n $顶点中所有图的集合。提出解决此问题的一种方法是将搜索限制为$ \ Mathcal {g} _n $的子集。在本文中,我们研究的子集是具有循环空间$ \ Mathcal {C} _n $的向量子空间作为主要示例。我们根据周期基元素的线性组合对$ \ MATHCAL {C} _n $提出了一个新的先验,并介绍其理论属性。使用此之前,我们实施了马尔可夫链蒙特卡洛算法,并表明(i)使用我们的技术计算的后边缘包含估计值可与尽管搜索较小的图形空间的标准技术的估计值相媲美,并且(ii)矢量空间透视启用了MCMC算法的直接实现。

Gaussian graphical models are useful tools for conditional independence structure inference of multivariate random variables. Unfortunately, Bayesian inference of latent graph structures is challenging due to exponential growth of $\mathcal{G}_n$, the set of all graphs in $n$ vertices. One approach that has been proposed to tackle this problem is to limit search to subsets of $\mathcal{G}_n$. In this paper, we study subsets that are vector subspaces with the cycle space $\mathcal{C}_n$ as main example. We propose a novel prior on $\mathcal{C}_n$ based on linear combinations of cycle basis elements and present its theoretical properties. Using this prior, we implement a Markov chain Monte Carlo algorithm, and show that (i) posterior edge inclusion estimates computed with our technique are comparable to estimates from the standard technique despite searching a smaller graph space, and (ii) the vector space perspective enables straightforward implementation of MCMC algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源