论文标题

海王星:边缘无服务器功能的网络和GPU感知管理

NEPTUNE: Network- and GPU-aware Management of Serverless Functions at the Edge

论文作者

Baresi, Luciano, Hu, Davide Yi Xian, Quattrocchi, Giovanni, Terracciano, Luca

论文摘要

如今,广泛的应用程序受到云基础架构无法满足的低延迟要求的限制。多访问边缘计算(MEC)已被提议作为用于执行应用程序更接近用户并减少延迟的参考体系结构,但是出现了新的挑战:Edge节点是资源受限的,由于用户是游牧的,工作负载可能会有很大差异,并且任务复杂性正在增加(例如,机器学习建议)。为了克服这些问题,本文提出了Neptune,这是一种基于无服务器的框架,用于管理复杂的MEC解决方案。 Neptune I)根据用户位置将功能放置在边缘节点上,ii)避免单个节点的饱和,iii)在可用的情况下利用GPU,iv)动态分配资源(CPU内核)以满足预见的执行时间。与三种最先进的方法相比,在一组实验中,使用了基于K3S之上的原型来评估Neptune,这些实验证明了响应时间,网络开销和资源消耗的显着降低。

Nowadays a wide range of applications is constrained by low-latency requirements that cloud infrastructures cannot meet. Multi-access Edge Computing (MEC) has been proposed as the reference architecture for executing applications closer to users and reduce latency, but new challenges arise: edge nodes are resource-constrained, the workload can vary significantly since users are nomadic, and task complexity is increasing (e.g., machine learning inference). To overcome these problems, the paper presents NEPTUNE, a serverless-based framework for managing complex MEC solutions. NEPTUNE i) places functions on edge nodes according to user locations, ii) avoids the saturation of single nodes, iii) exploits GPUs when available, and iv) allocates resources (CPU cores) dynamically to meet foreseen execution times. A prototype, built on top of K3S, was used to evaluate NEPTUNE on a set of experiments that demonstrate a significant reduction in terms of response time, network overhead, and resource consumption compared to three state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源