论文标题

单色子图的渐近正态性的第四刻现象

A fourth moment phenomenon for asymptotic normality of monochromatic subgraphs

论文作者

Das, Sayan, Himwich, Zoe, Mani, Nitya

论文摘要

给定图形序列$ \ {g_n \} _ {n \ ge1} $和一个简单的连接子图$ h $,我们用$ t(h,g_n)$表示单色副本的数量,$ h $的单色副本数量,均匀随机的$ g_n $ a $ g_n $ a $ c \ ge ge 2 $ 2 $ 2 $ 2 $ $ g_n $。在本文中,我们证明了具有明确错误率的$ t(h,g_n)$的中心限制定理。错误率是由通过加入$ h $的副本形成的收集的图计数而引起的,我们称之为良好的加入。良好连接的计数与$ t(h,g_ {n})$的归一化版本的第四刻密切相关,并且该连接使我们能够显示中心限制定理的第四刻现象。 确切地说,对于$ c \ ge 30 $,我们表明$ t(h,g_n)$(适当居中和重新定制)分配时会收敛到$ \ nathcal {n}(0,1)$,每当它的第四刻收敛到3(标准正态分布的第四次)时,我们表明,在$ c \ ge 2 $时获得正常限制是必要的第四刻的融合。这些结果的组合表明,第四刻的条件是所有子图$ h $(只要$ c \ ge 30 $,$ t(h,g_n)$的限制正态分布(h,g_n)$。

Given a graph sequence $\{G_n\}_{n\ge1}$ and a simple connected subgraph $H$, we denote by $T(H,G_n)$ the number of monochromatic copies of $H$ in a uniformly random vertex coloring of $G_n$ with $c \ge 2$ colors. In this article, we prove a central limit theorem for $T(H,G_n)$ with explicit error rates. The error rates arise from graph counts of collections formed by joining copies of $H$ that we call good joins. Counts of good joins are closely related to the fourth moment of a normalized version of $T(H,G_{n})$, and that connection allows us to show a fourth moment phenomenon for the central limit theorem. Precisely, for $c\ge 30$, we show that $T(H,G_n)$ (appropriately centered and rescaled) converges in distribution to $\mathcal{N}(0,1)$ whenever its fourth moment converges to 3 (the fourth moment of the standard normal distribution). We show the convergence of the fourth moment is necessary to obtain a normal limit when $c\ge 2$. The combination of these results implies that the fourth moment condition characterizes the limiting normal distribution of $T(H,G_n)$ for all subgraphs $H$, whenever $c\ge 30$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源