论文标题

部分可观测时空混沌系统的无模型预测

Statistical inference with regularized optimal transport

论文作者

Goldfeld, Ziv, Kato, Kengo, Rioux, Gabriel, Sadhu, Ritwik

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Optimal transport (OT) is a versatile framework for comparing probability measures, with many applications to statistics, machine learning, and applied mathematics. However, OT distances suffer from computational and statistical scalability issues to high dimensions, which motivated the study of regularized OT methods like slicing, smoothing, and entropic penalty. This work establishes a unified framework for deriving limit distributions of empirical regularized OT distances, semiparametric efficiency of the plug-in empirical estimator, and bootstrap consistency. We apply the unified framework to provide a comprehensive statistical treatment of: (i) average- and max-sliced $p$-Wasserstein distances, for which several gaps in existing literature are closed; (ii) smooth distances with compactly supported kernels, the analysis of which is motivated by computational considerations; and (iii) entropic OT, for which our method generalizes existing limit distribution results and establishes, for the first time, efficiency and bootstrap consistency. While our focus is on these three regularized OT distances as applications, the flexibility of the proposed framework renders it applicable to broad classes of functionals beyond these examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源