论文标题

足够的热空气:浸入冷却的作用

Enough Hot Air: The Role of Immersion Cooling

论文作者

Haghshenas, Kawsar, Setz, Brian, Bloch, Yannis, Aiello, Marco

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Air cooling is the traditional solution to chill servers in data centers. However, the continuous increase in global data center energy consumption combined with the increase of the racks' power dissipation calls for the use of more efficient alternatives. Immersion cooling is one such alternative. In this paper, we quantitatively examine and compare air cooling and immersion cooling solutions. The examined characteristics include power usage efficiency (PUE), computing and power density, cost, and maintenance overheads. A direct comparison shows a reduction of about 50% in energy consumption and a reduction of about two-thirds of the occupied space, by using immersion cooling. In addition, the higher heat capacity of used liquids in immersion cooling compared to air allows for much higher rack power densities. Moreover, immersion cooling requires less capital and operational expenditures. However, challenging maintenance procedures together with the increased number of IT failures are the main downsides. By selecting immersion cooling, cloud providers must trade-off the decrease in energy and cost and the increase in power density with its higher maintenance and reliability concerns. Finally, we argue that retrofitting an air-cooled data center with immersion cooling will result in high costs and is generally not recommended.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源