论文标题
使用对抗性学习的工业监测的替代数据增强
Alternative Data Augmentation for Industrial Monitoring using Adversarial Learning
论文作者
论文摘要
视觉检查软件已成为制造业的关键因素,用于质量控制和过程监控。语义分割模型已获得了重要性,因为它们允许进行更精确的检查。但是,这些模型需要大型图像数据集,以达到公平的精度级别。在某些情况下,培训数据稀疏或缺乏足够的注释,这一点尤其适用于高度专业的生产环境。数据增强代表了扩展数据集的常见策略。尽管如此,它仍然只会在狭窄范围内变化。在本文中,提出了一种新型策略来增强小图像数据集。该方法应用于特定行业用例的碳纤维的表面监测。我们采用两种不同的方法来创建二进制标签:问题列出的三角函数和一个WGAN模型。之后,使用Pix2Pix将标签翻译成颜色图像,并用于训练U-NET。结果表明三角函数优于wgan模型。但是,对所得图像进行的精确检查表明,wgan和图像到图像的翻译获得了良好的分割结果,并且仅偏离了传统数据增强。总而言之,这项研究使用生成对抗网络研究了数据综合的行业应用,并探讨了其监测生产环境系统的潜力。 \关键字{图像到图像翻译,碳纤维,数据增强,计算机视觉,工业监测,对抗性学习。
Visual inspection software has become a key factor in the manufacturing industry for quality control and process monitoring. Semantic segmentation models have gained importance since they allow for more precise examination. These models, however, require large image datasets in order to achieve a fair accuracy level. In some cases, training data is sparse or lacks of sufficient annotation, a fact that especially applies to highly specialized production environments. Data augmentation represents a common strategy to extend the dataset. Still, it only varies the image within a narrow range. In this article, a novel strategy is proposed to augment small image datasets. The approach is applied to surface monitoring of carbon fibers, a specific industry use case. We apply two different methods to create binary labels: a problem-tailored trigonometric function and a WGAN model. Afterwards, the labels are translated into color images using pix2pix and used to train a U-Net. The results suggest that the trigonometric function is superior to the WGAN model. However, a precise examination of the resulting images indicate that WGAN and image-to-image translation achieve good segmentation results and only deviate to a small degree from traditional data augmentation. In summary, this study examines an industry application of data synthesization using generative adversarial networks and explores its potential for monitoring systems of production environments. \keywords{Image-to-Image Translation, Carbon Fiber, Data Augmentation, Computer Vision, Industrial Monitoring, Adversarial Learning.