论文标题
$ SO(3)$四元素在Angular-Momentum投影中
$SO(3)$ quadratures in angular-momentum projection
论文作者
论文摘要
虽然角度摩肌投影是理论上核结构研究的常见工具,但对于三重变形状态,需要大量计算。 在目前的工作中,我们阐明了投影方法中四倍体的精确性条件。为了有效的计算,将LeBedev正交和球形$ t $ - 设计引入到角度摩托明投影中。 与常规的高斯 - legendre和梯形四倍术相比,讨论了四倍的准确性。我们发现,Lebedev正交是它们中最有效的,与常规方法相比,因子3/2降低了正交数量的必要数量,通常与计算时间成比例。
While the angular-momentum projection is a common tool for theoretical nuclear structure studies, a large amount of computations are required particularly for triaxially deformed states. In the present work, we clarify the conditions of the exactness of quadratures in the projection method. For efficient computation, the Lebedev quadrature and spherical $t$-design are introduced to the angular-momentum projection. The accuracy of the quadratures is discussed in comparison with the conventional Gauss-Legendre and trapezoidal quadratures. We found that the Lebedev quadrature is the most efficient among them and the necessary number of sampling points for the quadrature, which is often proportional to the computation time, is reduced by a factor 3/2 in comparison with the conventional method.