论文标题
Z2拓扑绝缘子中的等离子体
Plasmons in Z2 Topological Insulators
论文作者
论文摘要
我们使用随机相近似(RPA)研究了凯恩 - 梅尔模型中的等离激元激发,这是蜂窝晶格上的二维Z2拓扑绝缘子。在拓扑非平凡的阶段中,该模型的进行边缘状态,这些阶段遍历了宽大的能量间隙并显示自旋摩托明锁。这种物质的状态称为量子自旋大厅(QSH)阶段,它与时间反转(TR)不变扰动非常强大。我们发现,在QSH阶段,无间隙自旋极化等离子可以在系统边缘上激发。这些等离子的传播是每个单个旋转成分的手性,并且在同一边缘上的两个自旋成分显示了自旋摩托锁。此外,我们研究了外部磁场对无间隙边缘等离子体的影响。具体而言,平面外磁场在一个方向上传播不影响另一个方向的边缘等离子体,而平面磁场则可以选择性地刺激特定的自旋式平面分支,并适当地掺杂系统。我们的发现可能在新型的等离子和旋转设备中具有潜在的应用。我们还研究了有限大小的钻石形纳米片的凯恩 - 梅尔模型中的等离子体,并观察到循环材料边界的低能等离子体。
We study plasmonic excitations in the Kane-Mele model, a two-dimensional Z2 topological insulator on the honeycomb lattice, using the random phase approximation (RPA). In the topologically non-trivial phase, the model has conducting edge states that traverse the bulk energy gap and display spin-momentum-locking. Such a state of matter is called the quantum spin hall (QSH) phase, which is robust against time-reversal (TR) invariant perturbations. We find that in the QSH phase, gapless spin-polarized plasmons can be excited on the edges of the system. The propagation of these plasmons is chiral for each individual spin component and shows spin-momentum-locking for both spin components on the same edge. Moreover, we study the effect of external magnetic fields on the gapless edge plasmons. Specifically, out-of-plane magnetic fields delocalize edge plasmons propagating in one direction without affecting the other one, while an in-plane magnetic field can be applied to selectively excite a specific spin-plasmon branch with proper doping or gating to the system. Our findings may have potential applications in novel plasmonic and spintronic devices. We also investigate plasmons in the Kane-Mele model on a finite-sized diamond-shaped nanoflake and observe low-energy plasmons circulating the boundary of the material.