论文标题

通过场景消除种族公正的肤色估计

Towards Racially Unbiased Skin Tone Estimation via Scene Disambiguation

论文作者

Feng, Haiwen, Bolkart, Timo, Tesch, Joachim, Black, Michael J., Abrevaya, Victoria

论文摘要

虚拟面部化身将在身临其境的沟通,游戏和元视频中发挥越来越重要的作用,因此至关重要的是包容性。这需要准确的外观恢复,无论年龄,性别或种族如何,都以反照率表示。尽管在估计3D面部几何形状方面取得了重大进展,但反照率估计受到了较少的关注。该任务在根本上是模棱两可的,因为观察到的颜色是反照率和照明的函数,这两者都是未知的。我们发现,由于(1)偏爱较轻的色素沉着和(2)算法溶液,当前方法偏向于浅色肤色。为了解决这个问题,我们提出了一个新的评估数据集(FAIR)和算法(Trust),以改善反照率估计以及公平性。具体而言,我们创建了第一个面部反照率评估基准,其中受试者在肤色方面保持平衡,并使用单个类型学角度(ITA)度量来测量精度。然后,我们通过建立关键观察结果来解决光/反照率的歧义:与面部的裁剪图像相反,整个场景的形象包含有关照明的重要信息,可用于歧义。信任通过调节面部区域和从场景图像获得的全球照明信号来回归面部反照率。我们的实验结果表明,就准确性和公平性而言,与最先进的反照率估计方法相比,相比之下。评估基准和代码将用于研究目的,网址为https://trust.is.tue.mpg.de。

Virtual facial avatars will play an increasingly important role in immersive communication, games and the metaverse, and it is therefore critical that they be inclusive. This requires accurate recovery of the appearance, represented by albedo, regardless of age, sex, or ethnicity. While significant progress has been made on estimating 3D facial geometry, albedo estimation has received less attention. The task is fundamentally ambiguous because the observed color is a function of albedo and lighting, both of which are unknown. We find that current methods are biased towards light skin tones due to (1) strongly biased priors that prefer lighter pigmentation and (2) algorithmic solutions that disregard the light/albedo ambiguity. To address this, we propose a new evaluation dataset (FAIR) and an algorithm (TRUST) to improve albedo estimation and, hence, fairness. Specifically, we create the first facial albedo evaluation benchmark where subjects are balanced in terms of skin color, and measure accuracy using the Individual Typology Angle (ITA) metric. We then address the light/albedo ambiguity by building on a key observation: the image of the full scene -- as opposed to a cropped image of the face -- contains important information about lighting that can be used for disambiguation. TRUST regresses facial albedo by conditioning both on the face region and a global illumination signal obtained from the scene image. Our experimental results show significant improvement compared to state-of-the-art methods on albedo estimation, both in terms of accuracy and fairness. The evaluation benchmark and code will be made available for research purposes at https://trust.is.tue.mpg.de.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源