论文标题
超短式引导激子 - 果龙脉冲的非线性自我行动,介电板耦合到2D半导体
Nonlinear self-action of ultrashort guided exciton-polariton pulses in dielectric slab coupled to 2D semiconductor
论文作者
论文摘要
最近报道了过渡金属二甲化物(TMD)单层的激子 - 果态非线性值,这些单层与光学共振结构相连,在强烈的轻度耦合方面接近了基于GAAS的系统的值。与后者相反,基于TMD的极化设备在环境条件下仍在运行,因此具有更大的实用纳米光应用潜力。在这里,我们介绍了TA $ _2 $ o $ o $ _5 $ slab WaveGuide与WSE $ _2 $单层的非线性属性的研究。我们首先确认波导光子模式与2D半导体激子共振之间的杂交导致形成激元 - 果龙,而Rabi分裂为36 MeV。通过测量通过此基于TMD的极化波导的超短光脉冲的传播,我们首次证明了输出频谱对输入脉冲能的强非线性依赖性。我们的理论模型与实验提供了半定量的一致性,并洞悉了决定非线性脉冲自我行动的主要显微镜过程:库仑粒子间相互作用和散射到不一致的激子储层。我们还确认,在中间泵的能量下,系统支持脉冲传播的准平台孤子状态。我们的结果对于基于2D半导体的非线性片上极化设备的开发至关重要。
Recently reported large values of exciton-polariton nonlinearity of transition metal dichalcogenide (TMD) monolayers coupled to optically resonant structures approach the values characteristic for GaAs-based systems in the regime of strong light-matter coupling. Contrary to the latter, TMD-based polaritonic devices remain operational at ambient conditions and therefore have greater potential for practical nanophotonic applications. Here we present the study of the nonlinear properties of Ta$_2$O$_5$ slab waveguide coupled to a WSe$_2$ monolayer. We first confirm that the hybridization between waveguide photon mode and a 2D semiconductor exciton resonance gives rise to the formation of exciton-polaritons with Rabi splitting of 36 meV. By measuring transmission of ultrashort optical pulses through this TMD-based polaritonic waveguide, we demonstrate for the first time the strong nonlinear dependence of the output spectrum on the input pulse energy. Our theoretical model provides semi-quantitative agreement with experiment and gives insights into the dominating microscopic processes which determine the nonlinear pulse self-action: Coulomb inter-particle interaction and scattering to incoherent excitonic reservoir. We also confirm that at intermediate pump energies the system supports quasi-stationary solitonic regime of pulse propagation. Our results are essential for the development of nonlinear on-chip polaritonic devices based of 2D semiconductors.