论文标题

维护高频内容以进行深度学习的医学图像分类

Preservation of High Frequency Content for Deep Learning-Based Medical Image Classification

论文作者

McIntosh, Declan, Marques, Tunai Porto, Albu, Alexandra Branzan

论文摘要

胸部X光片用于诊断多种危重疾病(例如肺炎,心力衰竭,肺癌),因此,这些数据的自动或半自动分析系统特别感兴趣。对大量胸部X光片的有效分析可以帮助医师和放射科医生,最终可以更好地对与肺,心脏和胸部相关的状况更好。我们提出了一种新型的离散小波变换(DWT)的方法,用于有效识别和编码视觉信息的方法,该方法通常在高分辨率X光片的下采样中丢失,这是计算机辅助诊断管道中常见的一步。我们提出的方法只需要对现有最新卷积神经网络(CNN)的输入进行稍作修改,从而使其很容易适用于现有的图像分类框架。我们表明,我们的方法提供的额外高频组件提高了使用NIH Chest-8和Imagenet-2017数据集的基准中几个CNN的分类性能。基于我们的结果,我们假设提供特定于频率的系数使CNN可以专门研究频段特定的结构,最终提高了分类性能,而不会增加计算负载。我们的工作的实施可在github.com/declanmcintosh/legallcuda上获得。

Chest radiographs are used for the diagnosis of multiple critical illnesses (e.g., Pneumonia, heart failure, lung cancer), for this reason, systems for the automatic or semi-automatic analysis of these data are of particular interest. An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists, ultimately allowing for better medical care of lung-, heart- and chest-related conditions. We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information that is typically lost in the down-sampling of high-resolution radiographs, a common step in computer-aided diagnostic pipelines. Our proposed approach requires only slight modifications to the input of existing state-of-the-art Convolutional Neural Networks (CNNs), making it easily applicable to existing image classification frameworks. We show that the extra high-frequency components offered by our method increased the classification performance of several CNNs in benchmarks employing the NIH Chest-8 and ImageNet-2017 datasets. Based on our results we hypothesize that providing frequency-specific coefficients allows the CNNs to specialize in the identification of structures that are particular to a frequency band, ultimately increasing classification performance, without an increase in computational load. The implementation of our work is available at github.com/DeclanMcIntosh/LeGallCuda.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源