论文标题

一般节点去除下的学位分布:幂律还是泊松?

Degree distributions under general node removal: Power-law or Poisson?

论文作者

Lee, Mi Jin, Kim, Jung-Ho, Goh, Kwang-Il, Lee, Sang Hoon, Son, Seung-Woo, Lee, Deok-Sun

论文摘要

对网络系统的扰动可能会导致部分结构性损失,例如电网系统中的停电。研究网络属性中所得的干扰是典型的,对于了解实际网络中的真实网络是典型的。消除节点是一种代表性的干扰,但是以前的研究似乎与其对最基本的网络统计量(程度分布)的影响形成鲜明对比。关键问题是关于可以在节点去除或采样过程中可以改变的度分布的功能形式,这在其余子网的静态和动力学属性中是决定性的。在这项工作中,我们通过利用相对的索森和幂律形式的参考分布来阐明情况。引入具有连续不同级别的HUB保护的一般顺序节点去除过程,以涵盖一系列场景,包括随机去除和首选或保护性去除枢纽,我们通过比较两个相对熵值从各种幂律形式开始进行了变化的度分布。从基于直接淋巴结模拟的各种场景中的广泛研究,并通过求解度分布的速率方程式,我们在参数空间中发现了两个不同的制度,其中一个度数分布更接近幂律参考分布,而另一个则更接近泊松分布。

Perturbations made to networked systems may result in partial structural loss, such as a blackout in a power-grid system. Investigating the resultant disturbance in network properties is quintessential to understand real networks in action. The removal of nodes is a representative disturbance, but previous studies are seemingly contrasting about its effect on arguably the most fundamental network statistic, the degree distribution. The key question is about the functional form of the degree distributions that can be altered during node removal or sampling, which is decisive in the remaining subnetwork's static and dynamical properties. In this work, we clarify the situation by utilizing the relative entropies with respect to the reference distributions in the Poisson and power-law form. Introducing general sequential node removal processes with continuously different levels of hub protection to encompass a series of scenarios including random removal and preferred or protective removal of the hub, we classify the altered degree distributions starting from various power-law forms by comparing two relative entropy values. From the extensive investigation in various scenarios based on direct node-removal simulations and by solving the rate equation of degree distributions, we discover in the parameter space two distinct regimes, one where the degree distribution is closer to the power-law reference distribution and the other closer to the Poisson distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源