论文标题
股票市场异常检测的随机几何工具
Randomized geometric tools for anomaly detection in stock markets
论文作者
论文摘要
我们提出了新型的随机几何工具,以检测股票市场中低挥发性异常。金融经济学中的主要问题。我们对(检测)问题的建模导致通过将非标准单纯形与球体相交的地测量非凸和非连接球形斑块的(相对)体积(相对)体积。为了采样,我们介绍了两种新颖的马尔可夫链蒙特卡洛(MCMC)算法,这些算法利用了问题的几何形状,并采用了在球形斑块上适应的最新连续几何随机步行(例如台球步行和撞击)。据我们所知,这是对股票市场中波动性难题的第一个几何配方和基于MCMC的分析。我们已经在C ++(以及R接口)中实现了算法,并通过对真实数据进行广泛的实验来说明方法的功能。我们的分析为投资组合绩效特征的分布提供了准确的检测和新见解。此外,我们使用我们的工具来证明在财务形式的低挥发性异常检测的经典方法不好的代理,这可能会导致误导或不准确的结果。
We propose novel randomized geometric tools to detect low-volatility anomalies in stock markets; a principal problem in financial economics. Our modeling of the (detection) problem results in sampling and estimating the (relative) volume of geodesically non-convex and non-connected spherical patches that arise by intersecting a non-standard simplex with a sphere. To sample, we introduce two novel Markov Chain Monte Carlo (MCMC) algorithms that exploit the geometry of the problem and employ state-of-the-art continuous geometric random walks (such as Billiard walk and Hit-and-Run) adapted on spherical patches. To our knowledge, this is the first geometric formulation and MCMC-based analysis of the volatility puzzle in stock markets. We have implemented our algorithms in C++ (along with an R interface) and we illustrate the power of our approach by performing extensive experiments on real data. Our analyses provide accurate detection and new insights into the distribution of portfolios' performance characteristics. Moreover, we use our tools to show that classical methods for low-volatility anomaly detection in finance form bad proxies that could lead to misleading or inaccurate results.