论文标题
在从流中得出的部分地图上
On partial maps derived from flows
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The first-return map, or the Poincaré map, is a fundamental concept in the theory of flows. However, it can generally be defined only partially, and additional conditions are required to define it globally. Since this partiality reflects the dynamics, the flow can be described by considering the domain and behavior of such maps. In this study, we define the concept of first-exit maps and first-return maps, which are partial maps derived from flows, to enable such analysis. Moreover, we generalize some notions related to the first-return maps. It is shown that the boundary points of an open set can be classified based on the behavior of these maps, and that this classification is invariant under topological equivalence. Further, we show that some dynamical properties of a flow can be described in terms of the types of boundary points. In particular, if the flow is planar and the open set has a Jordan curve as its boundary, a more detailed analysis is possible, and we present results on the conditions which restrict possible forms of the first-exit maps . Finally, as an application of the results obtained, we consider the relationship between flows and a class of hybrid systems.