论文标题

具有变压器授权的6G智能网络:从大规模的MIMO处理到语义交流

Transformer-Empowered 6G Intelligent Networks: From Massive MIMO Processing to Semantic Communication

论文作者

Wang, Yang, Gao, Zhen, Zheng, Dezhi, Chen, Sheng, Gündüz, Deniz, Poor, H. Vincent

论文摘要

预计6G无线网络将加速物理和网络世界的融合,并以我们部署和利用通信网络的方式实现范式偏移。机器学习,特别是深度学习(DL),预计将通过提供高水平智能的网络的新范式来成为6G的关键技术推动力之一。在本文中,我们介绍了一种称为变压器的新兴DL体系结构,并讨论了其对6G网络设计的潜在影响。我们首先讨论了变压器和经典DL体系结构之间的差异,并强调变压器的自我发挥机制和强大的代表能力,这使得它在解决无线网络设计中的各种挑战方面特别有吸引力。具体而言,我们提出了基于变压器的解决方案,用于各种大规模多输入多输出(MIMO)和语义通信问题,并与其他体系结构相比表现出优势。最后,我们讨论了基于变压器解决方案的关键挑战和开放问题,并确定未来在智能6G网络中部署的研究方向。

It is anticipated that 6G wireless networks will accelerate the convergence of the physical and cyber worlds and enable a paradigm-shift in the way we deploy and exploit communication networks. Machine learning, in particular deep learning (DL), is expected to be one of the key technological enablers of 6G by offering a new paradigm for the design and optimization of networks with a high level of intelligence. In this article, we introduce an emerging DL architecture, known as the transformer, and discuss its potential impact on 6G network design. We first discuss the differences between the transformer and classical DL architectures, and emphasize the transformer's self-attention mechanism and strong representation capabilities, which make it particularly appealing for tackling various challenges in wireless network design. Specifically, we propose transformer-based solutions for various massive multiple-input multiple-output (MIMO) and semantic communication problems, and show their superiority compared to other architectures. Finally, we discuss key challenges and open issues in transformer-based solutions, and identify future research directions for their deployment in intelligent 6G networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源