论文标题
可允许的Hom-Novikov-Poisson和Hom-Gelfand-Dorfman颜色hom-or-algebras
Admissible Hom-Novikov-Poisson and Hom-Gelfand-Dorfman color Hom-algebras
论文作者
论文摘要
颜色hom-elgebras的主要特征是定义结构的身份甚至是线性图都会扭曲。本文的目的是介绍并提供一些可允许的Hom-Novikov-Poisson颜色的Hom-Novikov-Poisson Color hom-algebras和Hom-Gelfand-Dorfman color hom-algebras。定义了它们的双模型和匹配对,并给出了相关的属性和定理。此外,还证明了Hom-Novikov-Poisson颜色的Hom-Elgebras和Hom-Gelfand-Dorfman Color Hom-Elgebras之间的连接。此外,我们表明,可允许的Hom-Novikov-Poisson Color-hom-elgebras类别在张量产品下关闭。
The main feature of color Hom-algebras is that the identities defining the structures are twisted by even linear maps. The purpose of this paper is to introduce and give some constructions of admissible Hom-Novikov-Poisson color Hom-algebras and Hom-Gelfand-Dorfman color Hom-algebras. Their bimodules and matched pairs are defined and the relevant properties and theorems are given. Also, the connections between Hom-Novikov-Poisson color Hom-algebras and Hom-Gelfand-Dorfman color Hom-algebras is proved. Furthermore, we show that the class of admissible Hom-Novikov-Poisson color Hom-algebras is closed under tensor product.