论文标题

用机器学习模型的集体磁化过程描述

Description of collective magnetization processes with machine learning models

论文作者

Kornell, Alexander, Exl, Lukas, Breth, Leoni, Fischbacher, Johann, Kovacs, Alexander, Oezelt, Harald, Gusenbauer, Markus, Yano, Masao, Sakuma, Noritsugu, Kinoshita, Akihito, Shoji, Tetsuya, Kato, Akira, Mauser, Norbert J., Schrefl, Thomas

论文摘要

这项工作引入了一种潜在空间方法,以计算多流晶磁铁的反转过程。该算法由两个基于神经网络的深度学习模型组成。嵌入式的stoner-wohlfarth方法用作减少订单模型,用于计算样品训练和测试机器学习方法。这项工作是该方法的概念证明,因为使用的微观结构很简单,唯一的不同参数是硬磁性晶粒的磁各向异性轴。卷积自动编码器用于降低非线性维度,以减少预测磁滞回路所需的训练样本。我们通过有关潜在问题的物理信息丰富了损失功能,从而提高了机器学习方法的准确性。深度学习回归器正在自动编码器的潜在空间中运行。预测变量采用一系列先前编码的磁化状态,并沿磁滞曲线输出下一个磁化状态。为了预测完整的电磁循环,我们采用了递归学习方案。

This work introduces a latent space method to calculate the demagnetization reversal process of multigrain permanent magnets. The algorithm consists of two deep learning models based on neural networks. The embedded Stoner-Wohlfarth method is used as a reduced order model for computing samples to train and test the machine learning approach. The work is a proof of concept of the method since the used microstructures are simple and the only varying parameters are the magnetic anisotropy axes of the hard magnetic grains. A convolutional autoencoder is used for nonlinear dimensionality reduction, in order to reduce the required amount of training samples for predicting the hysteresis loops. We enriched the loss function with physical information about the underlying problem which increases the accuracy of the machine learning approach. A deep learning regressor is operating in the latent space of the autoencoder. The predictor takes a series of previously encoded magnetization states and outputs the next magnetization state along the hysteresis curve. To predict the complete demagnetization loop, we apply a recursive learning scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源