论文标题
通过输入策略的在线学习SMC法律的共同设计方法
A co-design method of online learning SMC law via an input-mappping strategy
论文作者
论文摘要
滑动模式控制策略的研究通常基于强大的方法。较大的参数空间考虑将不可避免地牺牲一部分性能。最近,数据驱动的滑动模式控制方法吸引了很多关注,并在引入数据以补偿控制器的情况下显示出了极好的好处。然而,大多数关于数据驱动的滑动模式控制的研究都依赖于标识技术,由于数据的特殊要求,该技术限制了其在线应用程序。在本文中,将输入映射技术插入了滑动模式控制的设计框架中,以补偿系统未知动态产生的影响。所提出的输入映射滑动模式控制策略的主要新颖性在于滑动模式表面和滑动模式控制器是通过从历史输入输出数据中的在线学习共同设计的,以最大程度地减少目标函数。然后,根据这项工作中设计的方法可显着提高系统的收敛速率。最后,提供了一些模拟以显示所提出方法的有效性和优越性。
The research on sliding mode control strategy is generally based on the robust approach. The larger parameter space consideration will inevitably sacrifice part of the performance. Recently, the data-driven sliding mode control method attracts much attention and shows excellent benefits in the fact that data is introduced to compensate the controller. Nevertheless, most of the research on data-driven sliding mode control relied on identification techniques, which limits its online applications due to the special requirements of the data. In this paper, an input-mapping technique is inserted into the design framework of sliding mode control to compensate for the influence generated by the unknown dynamic of the system. The major novelty of the proposed input-mapping sliding mode control strategy lies in that the sliding mode surface and the sliding mode controller are co-designed through online learning from historical input-output data to minimize an objective function. Then, the convergence rate of the system is improved significantly based on the method designed in this work. Finally, some simulations are provided to show the effectiveness and superiority of the proposed methods.