论文标题
校准标签的分布,用于摩擦治疗的膝关节分割
Calibrating Label Distribution for Class-Imbalanced Barely-Supervised Knee Segmentation
论文作者
论文摘要
3D膝盖MR图像的分割对于评估骨关节炎很重要。像其他医学数据一样,膝盖MR图像的体积标签是专业知识的且耗时的。因此,半监督的学习(SSL),尤其是几乎没有监督的学习,非常需要使用标记的数据来培训。我们观察到,由于软骨仅占据前景量的6%,并且没有足够标记的数据,因此膝关节MR图像中的类不平衡问题很严重。为了解决上述问题,我们提出了一个新颖的框架,用于几乎没有监督的膝盖分割,并带有嘈杂和不平衡的标签。我们的框架利用标签分布来鼓励网络为学习软骨零件付出更多的努力。具体而言,我们利用1.)标记数量分布将目标损失函数修改为较感知的加权形式和2.)标签位置分布,用于构建农作物概率掩码,从标记和未标记输入的软骨区域中耕作更多的子Volumes。此外,我们设计了双重不确定性感知的采样监督,以增强对低调类别的监督,以进行有效的无监督学习。实验表明,我们提出的框架通过合并未标记的数据并减轻阶级不平衡问题,从而带来了重大改进。更重要的是,我们的方法优于最先进的SSL方法,证明了我们在更具挑战性的SSL设置方面的潜力。
Segmentation of 3D knee MR images is important for the assessment of osteoarthritis. Like other medical data, the volume-wise labeling of knee MR images is expertise-demanded and time-consuming; hence semi-supervised learning (SSL), particularly barely-supervised learning, is highly desirable for training with insufficient labeled data. We observed that the class imbalance problem is severe in the knee MR images as the cartilages only occupy 6% of foreground volumes, and the situation becomes worse without sufficient labeled data. To address the above problem, we present a novel framework for barely-supervised knee segmentation with noisy and imbalanced labels. Our framework leverages label distribution to encourage the network to put more effort into learning cartilage parts. Specifically, we utilize 1.) label quantity distribution for modifying the objective loss function to a class-aware weighted form and 2.) label position distribution for constructing a cropping probability mask to crop more sub-volumes in cartilage areas from both labeled and unlabeled inputs. In addition, we design dual uncertainty-aware sampling supervision to enhance the supervision of low-confident categories for efficient unsupervised learning. Experiments show that our proposed framework brings significant improvements by incorporating the unlabeled data and alleviating the problem of class imbalance. More importantly, our method outperforms the state-of-the-art SSL methods, demonstrating the potential of our framework for the more challenging SSL setting.