论文标题
部分可观测时空混沌系统的无模型预测
Evolving Collaboration, Dependencies, and Use in the Rust Open Source Software Ecosystem
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Open-source software (OSS) is widely spread in industry, research, and government. OSS represents an effective development model because it harnesses the decentralized efforts of many developers in a way that scales. As OSS developers work independently on interdependent modules, they create a larger cohesive whole in the form of an ecosystem, leaving traces of their contributions and collaborations. Data harvested from these traces enable the study of large-scale decentralized collaborative work. We present curated data on the activity of tens of thousands of developers in the Rust ecosystem and the evolving dependencies between their libraries. The data covers seven years of developer contributions to Rust libraries and can be used to reconstruct the ecosystem's development history, such as growing developer collaboration networks or dependency networks. These are complemented by statistics on downloads and popularity, tracking the dynamics of use and success over time. Altogether the data give a comprehensive view of several dimensions of the ecosystem.