论文标题
$λ$ - 基于游戏理论的VVC率控制
$λ$-domain VVC Rate Control Based on Game Theory
论文作者
论文摘要
Versatile视频编码(VVC)已在高效视频编码中设定了一个新的里程碑。在标准编码器中,$λ$ - 域率控制的高度准确性和良好的速率(RD)性能合并。在本文中,我们将此任务提出为NASH均衡问题,该问题可有效地在框架中的多种代理之间讨价还价,即{\ it iT},编码树单元(ctus)。之后,我们通过两步策略计算最佳$λ$值:迭代获得中间变量的牛顿方法,以及nash平衡的解决方案以获得最佳的$λ$。最后,我们建议使用最佳$λ$值进行有效的CTU级速率分配。据我们所知,我们是第一个将游戏理论与$λ$ - 域税率控制相结合的人。常见测试条件(CTC)的实验结果证明了该方法的效率,该方法的效率优于最先进的CTU级速率分配算法。
Versatile Video Coding (VVC) has set a new milestone in high-efficiency video coding. In the standard encoder, the $λ$-domain rate control is incorporated for its high accuracy and good Rate-Distortion (RD) performance. In this paper, we formulate this task as a Nash equilibrium problem that effectively bargains between multiple agents, {\it i.e.}, Coding Tree Units (CTUs) in the frame. After that, we calculate the optimal $λ$ value with a two-step strategy: a Newton method to iteratively obtain an intermediate variable, and a solution of Nash equilibrium to obtain the optimal $λ$. Finally, we propose an effective CTU-level rate allocation with the optimal $λ$ value. To the best of our knowledge, we are the first to combine game theory with $λ$-domain rate control. Experimental results with Common Test Conditions (CTC) demonstrate the efficiency of the proposed method, which outperforms the state-of-the-art CTU-level rate allocation algorithms.