论文标题
自动检测太阳风中的星际冠状质量弹出原位数据
Automatic Detection of Interplanetary Coronal Mass Ejections in Solar Wind In Situ Data
论文作者
论文摘要
星际冠状质量弹出(ICMES)是空间天气干扰的主要驱动因素之一。过去,已使用不同的方法自动检测由太阳风原位观察结果产生的现有时间序列中的事件。但是,在面对来自不同工具的大量数据时,准确而快速的检测仍然是一个挑战。为了自动检测ICMES,我们使用最近在医疗图像分割方面成功证明成功的方法提出了一条管道。将其与现有方法进行比较,我们发现,尽管取得相似的结果,但我们的模型的表现优于训练时间的基线约为20倍,因此使其更适用于其他数据集。该方法已在1997年至2015年之间的风飞船的原位数据上进行了测试,其真实技能统计(TSS)为0.64。在640个ICME中,我们的算法正确检测到了466个,总共产生了254个假阳性。此外,它在数据集中产生了合理的结果,其功能较少,而Wind,Stereo-A和Stereo-B的较小训练集分别为0.56、0.57和0.53。我们的管道设法找到了ICME的开始,其平均绝对误差(MAE)约为2小时56分钟,并且最终时间为3小时20分钟。相对快速的训练可以直接调整超参数,因此可以轻松地用于检测太阳风数据中的其他结构和现象,例如固定相互作用区域。
Interplanetary coronal mass ejections (ICMEs) are one of the main drivers for space weather disturbances. In the past, different approaches have been used to automatically detect events in existing time series resulting from solar wind in situ observations. However, accurate and fast detection still remains a challenge when facing the large amount of data from different instruments. For the automatic detection of ICMEs we propose a pipeline using a method that has recently proven successful in medical image segmentation. Comparing it to an existing method, we find that while achieving similar results, our model outperforms the baseline regarding training time by a factor of approximately 20, thus making it more applicable for other datasets. The method has been tested on in situ data from the Wind spacecraft between 1997 and 2015 with a True Skill Statistic (TSS) of 0.64. Out of the 640 ICMEs, 466 were detected correctly by our algorithm, producing a total of 254 False Positives. Additionally, it produced reasonable results on datasets with fewer features and smaller training sets from Wind, STEREO-A and STEREO-B with True Skill Statistics of 0.56, 0.57 and 0.53, respectively. Our pipeline manages to find the start of an ICME with a mean absolute error (MAE) of around 2 hours and 56 minutes, and the end time with a MAE of 3 hours and 20 minutes. The relatively fast training allows straightforward tuning of hyperparameters and could therefore easily be used to detect other structures and phenomena in solar wind data, such as corotating interaction regions.