论文标题
$ \ Mathcal {n} = 1 $ Quivers in 5d及其非依赖性极限
Holographic duals of $ \mathcal{N}=1 $ quivers in 5d and their nonrelativistic limits
论文作者
论文摘要
我们探索$ \ Mathcal {n} = 1 $ Quiver仪表理论的非依赖性极限。这些scft的弦乐对应物的特征是扭转字符串牛顿 - 卡丹(TSNC)Sigma模型这些模型是通过非Lorentzian歧管定义的。我们进一步表明,在TSNC Sigma模型下,将这些TSNC Sigma模型映射到另一种新的非依赖性Sigma模型中,这些模型是在T偶二维TSNC背景下定义的。考虑到全息图中各种字段理论的非依赖性限制,我们在$ \ natercal {n} = 1 $ Quivers的TSNC极限中进一步估算相应的实体。我们在非层次主义极限($ p,q $)五个brane网中对全体形态功能和相关的极点结构进行并行分析。特别是,我们研究了非依赖主义设置中各种循环运算符的通用结构,并在s偶尔下探索其属性。最后,我们对RR字段的大$ C $限制发表评论,并在$ \ Mathcal {n} = 1 $ Quivers的非依次性限制中讨论相关的S-偶数转换规则。
We explore nonrelativistic limits of $\mathcal{N}=1$ quiver gauge theories in 5d. The stringy counterpart of these SCFTs is characterised by torsional string Newton-Cartan (TSNC) sigma models those are defined over non-Lorentzian manifolds. We further show that under transverse T-duality, these TSNC sigma models are mapped into another new class of nonrelativistic sigma models those are defined over a T-dual TSNC background. Considering nonrelativistic limits of various field theory observables in a holographic set up, we further estimate corresponding entities in the TSNC limit of $ \mathcal{N}=1 $ quivers. We carry out a parallel analysis on holomorphic functions and the associated pole structures in the nonrelativistic limit of ($ p ,q $) five brane webs. In particular, we investigate the generic structure of various loop operators in a nonrelativistic set up and explore their properties under S-duality. Finally, we comment on the large $ c $ limit of RR fields and discuss the associated S-duality transformation rules in the nonrelativistic limit of $ \mathcal{N}=1 $ quivers.